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Abstract-Analytical and computational results are presented for the evolution of stresses and
deformation fields due to indentation from a rigid axisymmetric indentor on an elastic substrate,
The theory addresses the variations in Young's modulus, E, of the substrate as a function of depth,
z, beneath the indented surface for two cases: (I) a simple power law, E = Eoi', where 0 ,;;; k < I is
a non-dimensional exponent; (2) an exponential law, E = Eoe", where Eo is Young's modulus at
the surface and rx is a length parameter, The indentor geometries for which analytic solutions are
derived include flat circular punch, sphere and circular cone. The analytical results for the punch
are compared with finite element simulations; the latter validate the theory and offer further insights
into the effects of the variation in Poisson ratio, v, with depth. :£; 1997 Elsevier Science Ltd.

I. INTRODUCTION

The indentation due to the application of a point force of an elastic solid, with gradients in
Young's modulus as a function of depth, was analyzed in Part I of this work (Giannako­
poulos and Suresh, 1997), Closed-form solutions and computational results were presented
in Part I for the stresses and displacement fields in the elastic medium which was assumed
to have a fixed Poisson ratio and whose Young's modulus, E, varied with depth, z, beneath
the indented surface by one of two prescribed functions: (1) a simple power law, E = Eo:!',
where 0 :( k < 1 is a non-dimensional exponent, and (2) an exponential law, E = Eoe'z,
where Eo is Young's modulus at the surface and IX < 0 and IX > 0 denote hardened and
softened surfaces, respectively. The effect of Poisson ratio on the evolution of fields during
indentation by a point force were also studied computationally.

A survey of published work reveals that little understanding exists about the evolution
of stresses and displacements as a function of depth in the graded medium beneath the
contact surface, for axisymmetric indentors. (A full review of literature on the indentation
of a graded elastic solid by a point force is given in Part L) For the power-law variation of
E with depth, E = Eozk

, Kassir (1972) presented solutions for surface displacements due to
a rigid circular punch under normal and shear loads. He considered the special case of the
critical Poisson ratio, v = Vcr = 1/(k+2). (As shown in Part I, at v = Vcr is a special case
where radial stress fields emanate from the point of indentation.) Booker et al. (1985)
reported solutions for the vertical surface displacements of a graded elastic half-space under
point, line, circular ring and strip loads applied normally to the surfaces. They considered
only a specific Poisson ratio, V = 0.25, and did not examine general axisymmetric indentor
geometries or exponent rise or decay in E as a function of depth. Oner (1990) analyzed the
surface displacements arising from rigid circular and rectangular punches ( footings) which
indented a graded elastic substrate with a power law variation of E. He considered only the
case of v = Vcr = 1/(k+2). Similar analyses were also reported by Fabrikant (1989) and
Yong and Hanson (1994).

It is the objective of the present paper, Part II, to provide analytical and computational
solutions for more general and practically relevant problems of indentation of a graded
elastic substrate by rigid axisymmetric indentors. The indentor geometries examined include
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a circular punch, a sphere and a cone. The variations of the Young's modulus with depth
beneath the indented surface were close to be the same as those in Part I, i.e., a power law
function and an exponential function. The Poisson ratio was held constant (as a function
of depth); however, several Poisson ratios were examined (0 ~ v < 1/2). (This choice was
motivated by the results of Part I that gradients in Poisson ratio have a significantly less
pronounced response on the indentation characteristics of the elastic substrate than gradi­
ents in Young's modulus.) The analytical results for indentation of a grated elastic solid
by a rigid circular punch are compared with detailed finite element simulations. Similar
computational results for the conical and spherical indentors are not reported here because
of space restrictions; they will be presented separately, along with the results of systematic
experimental measurements (Suresh et al., 1996; Alcala et al., 1996). In all subsequent
analyses (r, z) denotes the axisymmetric polar coordinates for a half space, z ~ 0, with
corresponding displacements (u, w). A force, P, is applied on the indentor normal to the
surface and the problem becomes axisymmetric around the z-axis.

2. THEORY FOR THE RIGID CIRCULAR PUNCH PROBLEM

2.1. The power law case: E = EoZk

Using the solution of the generic Boussinesq problem (a point force on the surface of
a semi-infinite elastic medium), a circular punch of radius a can be analyzed, Fig. lao Let
p(r) be the normal pressure at the contact circular area with p(r) ~ 0 for 0 ~ r ~ a and
p(r) = 0 for r> a. Since the contact is assumed frictionless, no surface shear stresses are
present, (Jrz (z = 0) = O. The vertical displacement at the surface is w(r) = Wo at 0 ~ r ~ a.
Using the expressions for the point load (see Part I), the integral equations for a ring type
of normal load and subsequently for a uniform, normal to the surface z = 0, axisymmetric
pressure was formulated. The solution to the rigid, frictionless indentor problem involves
a system of coupled integral equations of the form

o= r'l) p(fJ) f (fJr/a) dfJ,
Jo Jo

for the condition of no external stress outside the contact area (1 < ria < (0), and

w foo fAO = fJk-lp(fJ) (fJr/a) dfJ,
k ° ~

(1)

(2)

for the condition of the punch displacement inside the contact area (0 ~ ria < 1). Here, Jo
is the Bessel function of the first kind of zeroth order and Ak is a constant that appears at
the force-depth relation of the point force solution (Booker et al., 1985; Giannakopoulos
and Suresh, 1996). The general solution of the above system of equations, for 0 ~ k < 1, is
(Busbridge, 1938)

w . II flp(r/a) = AO(2r/a)-k/2+3/2 f/ 2+ 1/2J(k_l)/2(tr/a)dt t(1_t2)k/2-3!2dt.

k ° °
(3)

Using the integral properties of the Bessel functions (Whittaker and Watson, 1962), we
obtain the result

2 1 - k

() Wo (2 2)(k-I)!2
P r = Ak [r(k/2+ 1/2W a -r , (4)

where r( ) is the Gamma function (Magnus and Oberhettinger, 1954). A similar result was
derived by Mossakovskii (1958). Note that the homogeneous elastic substrate case is
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Fig. I. (a) The circular punch problem for the power law case, E = Eot. (b) The normalized force­
depth (P/(Eod' + 2) - wo/a) relation for the homogeneous and power law cases.

retrived for k = 0 (Sneddon, 1946). The singularity at the punch edge (r = a) is weaker for
the graded elastic medium than that for the homogeneous case. For the same indentation
depth, Wo, the pressure distribution is also correspondingly lower at all points of contact
(0 ~ r ~ a). The contact pressure distribution decreases with the Poisson ratio, v, for the
same indentation depth. It is clear that the problem's only characteristic length is the radius,
a, of contact. Taking into account the actual relation for the constant, Ab and integrating
for the total applied force, P,
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P(l+k)( rZ)(k-I),Z
p(r) = 1--

2naz aZ (5)

The minimum contact pressure appears at r = 0,

P(1 +k)
Pmin = p(O) = 2 Z '

na
(6)

and, for a given load, P, is higher than the corresponding homogeneous elastic case by a
factor of k. The displacement, wo, is related to the total load, P, according to

where

with

n()* P(1 +k)
Wo =--

kn 2a' +k '
cos2

(7)

(8)

q = J(1 +k)(l-kv/(1-v)), (9)

Note that the force-depth (P - wo) relation is linear, as in the homogeneous case; however,
the force is lower than the corresponding homogeneous case, as indicated schematically in
Fig. 1b. The displacement outside the contact region, 0 ~ r < 00, is

(10)

where Fis the Gauss hypergeometric function (Magnus and Oberhettinger, 1954). For the
same indentation depth, wo, less sinking-in appears for the elastic solid with a power law
variation of E than for the corresponding homogeneous one. The same results were found
by Booker et al. (1985) in a different way: by using the point force solution in spherical
coordinates, representing the punch deflection by a Fourier integral and finally solving the
resulting Abel integral equation. For k = 0 (q = 1), that is, E = Eo, we recover the classic
homogeneous solution of Sneddon (1946) with

1- v
Z

(1 1 3
()* = nEo ' F 2' 2' 2' a

Z

) = ~ sin- 1 (~).
rZ a r

(11)

For v = 1/(2+k), which gives q = 1, ()* simplifies to
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(12)

This particular case was examined by Kassir (1972) where the solution for the force-depth
relation becomes

(1 +v) P
Wo=--

kn 4E a1+k
cos- 0

2

(13)

Some of Kassir's results (valid for v = 1/(2+k)) are woEoa' +k1(2P(1 + v)) = 0.3927,0.4535,
0.5554,0.7854, for k = 0, 1/3, 1/2, 1/3, respectively. On similar lines, one can use the closed
form point force solution for the particular case of Poisson ratio v = I/(k +2) to construct
a solution for rigid square punches of length B, as was done by Oner (1990),

2(1+v) P
Wo = --K,

Eo B l + k
(14)

with the constant K = 0.2165, 0.2912, 0.3841, 0.5945 for k = 0, 1/3, 1/2,2/3, respectively.
The above solution is particularly important for the unloading interpretation of the Vickers
and other sharp indentation tests (e.g., Berkovich, Rockwell, etc.).

2.2. The exponential law case: E = Eoe"
In the following, in order to keep the analysis short without sacrificing the essential

results, we examined the particular case of v = O. In this case, an approximate closed
form analytic solution can be derived which can be very illuminating for the subsequent
discussions of the influence of material length in graded materials. Full finite element
analysis (presented later) showed that this assumption is not very limiting regarding the
essential results. From Part I, one can use the point force solution for v '# 0 in the same
way as below; however, the analysis becomes unduly complicated. Using the force-surface
displacement relation from the Boussinesq point force problem, Part I, Giannakopoulos
and Suresh (1996), the surface displacement for a unit ring load, at a distance p from the
z-axis of symmetry is given by

where

p facw(r, p) = - G(tllY.)Jo(rlq)Jo(pt) dt,
Eo 0

G(qjlY.) = (2qjlY.)J(2qllY.)
2 + 1 .

(1 +J (2qjlY.) 2+ 1)2

(15)

(16)

Assume an axisymmetric convex indentor, z,(r), in perfect frictionless contact with the
surface within a disk of radius a. Let p(r) be the contact pressure (p(r) ~ 0) and h the
indentor's depth. Then, the integral equation that controls the problem for 0 ~ r ~ a reads
as

f w(r, p)p(p) dp = h-z, (r). (17)

The integral equation (17) does not have an exact solution, but may be solved approxi­
mately. We first observe that G(x) is bounded, 0 ~ G(x) < 1, with G(x = 0) = 0 and G(x--+
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(0) -+ 1. The tangent line around x = 0 is G(x) = x/2, 0 ~ G < 1. The problem can be
normalized by taking the non-dimensional quantities

x = ra, ~ = pa, a* = Ga, p(r) = a</J(ra). (18)

Note that a* gives the relative size of the contact radius, a, and the material characteristic
length is l/a. Then, the controlling integral equation (17) can be rearranged as

(19)

in the region 0 ~ ~ ~ a*, with

(20)

In view of the shape of function G(s), the kernel, K(x, ~), can be approximated as

(21)

with A being a dimensionless constant with a value sufficiently high to capture the essentials
of the approximation (21). Expanding the Bessel functions into power series and keeping
N terms in the integrations of the series expansions, we obtain

(22)

with

(23)

From the functional form of G(x), it can be concluded that Ck > O. Numerical integration
gives the following results: Co = 3.7 and C1 = 403.5. A further transformation,

t = x/a*, X(t) = a*¢(a*t),

gives (for the range 0 ~ t ~ 1)

a*f K(ta*, ra*)rx(r) dr = f(ta*).

(24)

(25)

For the circular stamp case, the solution and the Bessel function, Jo, are expanded in
Legendre polynomials, Pn • Extracting the singular term of the homogeneous circular punch
problem (a procedure typical for elastic fracture mechanics),

(26)

where Ym (m = 0, 1,2, ... ) are constants to be determined and P: are connected with the
Legendre polynomials, P2m, P:(t) = P2m(JT=t2).
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Using the orthogonality of the Legendre polynomials and the integral properties of
the Bessel functions, we can find iteratively the constants, Ym • Remembering that
p(r) = x(r/a)/a, the total force, P, acting on the indentor is

P = 21t J: rp(r) dr = 21taYo· (27)

In order to determine the depth-contact radius (h -a) relation for sufficiently smooth
indentors, we assume complete contact and zero contact stress at the contact perimeter
r=a(t=l).

For N = 1, we have a two-term expansion given by the two constants

where

1t ( C j 2 )'/'(ex*)=--IX* C _-ex*2+-C2ex*5
'I' 2 0 3 45n I ,

4 3 40
Fo = 10 + 31t CdllX*, FI = ----;11,

i
l l(tlX*)P1(t)

f,= ~ tdt, (/=0,1, ... ),
o v 1- t2

(28)

(29)

(30)

(31 )

Xo = 1, (32)

It is implicitly assumed that the previous expansions hold for small values of ex*(IIX*1 « 1).
Some closed form approximations can be made for stamps with a circular base of

radius a, Fig. 2a. It may then be assumed that zl(r) = Wo in eqns (17), (20a) and (31), an
assumption that will be further discussed later. The pressure distribution, p(r) (0 ~ r ~ a),
is related to the load as

(33)

Note that the ordinary square root singularity of the contact pressure distribution is
retained, as in the homogeneous case (IX = 0). For a given indentation depth, wo, the contact
pressure is higher for ex > 0 (soft to stiff case) and lower for ex < 0 (stiff to soft case) than
the corresponding homogeneous case (ex = 0) when the punch is in complete contact with
the surface. The case of IX < 0 is expected on the physical argument that the soft substrate
will not resist strongly the applied deformation. However, the case of ex> 0 contradicts the
power law case which also models soft to stiff elastic gradation (eqn (5». The reason is the
way the gradation takes place: concave in the power law case and convex in the exponential
case. This seems to be important and is related to the type of constraint in the overall
deformation that the functional form of the elastic modulus exerts in the contact problems:
the convex type results in higher resistance than the concave type.

Using eqn (27) in eqn (17) (with ZI = 0 and h = wo), the force-depth (P = wo) relation
for the circular punch reduces to
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Fig. 2. (a) The circular punch problem for the exponential law case, E = Eoe". (b) The normalized
force-depth (P/(Eoa

2
) - wo/a) relation for the homogeneous and exponential law cases.

(34)

The force-depth (P- wo) relation is linear, as in the homogeneous case (IX = 0); however,
the force is higher for IX > 0 and lower for IX < 0, as indicated in Fig. lb. For the same
absolute value of IX, and normalized depth wo/a, the force drop for IX < 0 is higher than the
corresponding force increase for IX > O. This means that, if the force is normalized by the
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Fig. 3. The development of partial contact for the exponential law case, E = Eoe7.:, all';;; -1.125.

corresponding value for the homogeneous case, p.~o, then [1- p.<o/p.~o] > P»o/p.~o > 0
(see Fig. 3).

3. THE GENERAL RIGID AXISYMMETRIC INDENTOR

3.1. The power law case: E = Eozk

Using the superposition argument, we can use the previous punch solution to solve
the problem of a rigid (frictionless) axisymmetric indentor of convex shape zl(r). Assume
that the contact area is a circular disc of radius a(O ~ r ~ a). As a fairly general case of a
wide class of indentor shapes, let zl(r) = Mr fJ , with {3 ~ 1 and M> 0 (the dimension of M
is length l

- fJ). The displacement at contact follows the indentor's shape:

w(r) = h-MrfJ , (35)

where h is the depth of the indentor's penetration. Then the contact stress distribution,p(r),
is formulated by superposition (eqn (5»

PO+k)O+k+{3)f l [ (r)2J(k~I)!2
p(r) = t2- - tfJ - 1dt.

2na2
r!a a

The total force, P, is given by integrating the contact stresses (eqn (36»

(36)

where the constant CI is
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(38)

The depth-radius (h-a) relation can be found by requiring that stress be zero at the
contact perimeter (which is to be expected for smooth axisymmetric indentors),

r(~)r(I+~)
h = MaP (I k f3)r -+-+­222

(39)

This relation also serves as a measure of the amount of sinking-in of the contact region and
indicates that for a given indentation depth, h, the contact radius, a, increases with k. This
is expected because close to the surface, the stiffness is low. Using the above relations, we
can connect the contact radius, a, with the total force, P,

(40)

Combining eqns (39) and (40), the force-depth (P-h) relation can be found. It can be
shown that the (P-h) curve is always concave, for all axisymmetric indentors described
by eqn (35). For low values of h, the P values are lower than for the corresponding
homogeneous case, and for higher value of h, the P values are higher than for the homo­
geneous case, in accordance with expectations. Therefore, for given v, Eo, k, f3 and M, the
elastic contact problem with power law elastic modulus distribution can be completely
solved. It should be further noted that a change in the curvature of the indentor's tip by,
for example, plastification, may lead to drastic changes of the force-depth, as well as the
average pressure results, a fact that must be carefully examined in actual tests where the
indentor is allowed to plastically deform.

In case of f3 = 2n, where n = 1,2,3, ... ,eqn (36) can be solved exactly to give

P(l +k)(l +k+2n)[ (r)2J(l+kl!2
p(r) = 1- -

2na2 a

{
I 2n-2 (r)2x + - + ...

k+2n-1 (k+2n-l)(k+2n-3) a

(2n-2)(2n-4) 6.4.2 (r)2n-2}
+ (k+2n-l)(k+2n-3) (k+3)(k+ I) ~ .

(41)

For the homogeneous case, k = 0, the above results (eqns (40) and (41» reduce to the
results of Hill and Storakers (1990).

The normal surface deformation outside the contact area (a ~ r < (0) is
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(42)

Given an indentation depth, h, the surface deformation outside the contact area is less for
a power law material than for a homogeneous one. Hence, for the same indentation depth,
less sinking-in at the contact perimeter should appear for the power law solid than for the
corresponding homogeneous one.

The horizontal displacement, u(r), at the surface (z = 0 and 0 ~ r ~ OC!) is related to
the vertical displacement, w(r), as

{
( k)}2nq r 1+-

2(1 +k) cos 2 2

u(r) = w(r) qk ~ (1 +k) ,
sm- r ~~

2 2

(43)

with q = J(l +k)(l-kv/(l-v)) as before. Note that u and w have no other extrema than
that at the surface (z = 0).

The present solution also satisfies the incremental contact conditions dP dh ~ 0 and
dadh ~ 0, with P = 0 and a = 0 when only h = O.

The particular case of k = 1 (Gibson soil, E = Eoz) (Gibson, 1967), and v = 0.5
(incompressibility) will be examined in the Appendix.

3.2. The exponential law case: E = Eoe"
Using superposition of the circular punch solution and the conditions of zero stress at

the contact boundary (r = a), we can approximate the force-depth (P-h) and the depth­
contact radius (h-a) relations for any convex axisymmetric punch of profile z, = z1(r).
The force-contact radius relation (P- a) reads as

P = 2nEo[h_I(ct*)]ct*t/t-l,
ct

where ct* = act, t/t is given by eqn (29) and

(44)

(45)

with P: (t) = P2m(J 1- t2
) denoting the modified Legendre polynomials. The depth-contact

radius relation (h - a) is given by

(46)

Combining eqns (44) and (46), we can also relate the force, P, with the depth, h (it is not
given here because of space restrictions). The force-depth relation is concave for ct > 0
(surface softer than bulk material) and convex for IX < 0 (surface stiffer than bulk material).
In the case of a smooth indentor and under low levels of load, the force-depth relation
deviates little from the corresponding homogeneous case.
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3.3. Stability issues for the exponential law case: E = Eoe"
In all previous analysis, we must satisfy p(r) :::::: 0 (0 ~ r ~ a) in order to keep the

present contact analysis valid. For stability of the load-depth (P - h) result, the incremental
contact conditions dh da :::::: 0, dh dP > 0 must be satisfied with P = 0 and oe = 0, if and only
if h = O. We now examine how these conditions pertain to the punch, spherical and conical
indentors.

For the circular punch case, it can be immediately verified that the above contact
condition is never violated, if

(47)

Condition (47) gives oe* > - 0.18; a failure to meet this condition implies that a partial
contact will develop. The condition applies only to the case of oe < 0 (stiff surface on a soft
substrate, such as for a ceramic coating on a metallic substrate with a graded interface),
loss of complete contact is never a problem for oe > 0 (soft surface on a stiff substrate). To
keep the load-displacement response stable, the condition

(48)

must be valid. This condition restricts the values of oe* = aoe; that is, it restricts the punch
radius, a, to be a fraction of the characteristic material length, loe-'I, that defines the material
inhomogeneity. Condition (48) gives - 0.25 < oe* < 0.4, independently of the load level. It
is clear that for oe < 0, loss of complete contact will precede instability. For oe < 0, the
stability condition corresponds to an overall loss of stiffness in the circular flat punch test.
For oe > 0, the stability condition corresponds to an overly rigid response of the contact
surface deformation. The type of contact pressure distribution that develops in the case of
partial contact (oe < 0) is shown in Fig. 3. In that case, the contact pressure retains the
singularity (r- 112

) at the punch perimeter (r = a) and drops to zero at the separation
boundary (r = a,). This phenomenon may be particularly important in foundation engin­
eering when the top soil may be overly compacted (and hence become much stiffer than the
substrate), in combination with a rigid and largely spread footing (e.g., general foundation
for tall buildings).

For the spherical punch of diameter D, the contact condition, p(r) :::::: 0, requires

which predicts a critical load

8n P ,
-+-Coe'>OD Eo I ,

(49a)

8n 1
----=

C 1 (oeD)3

-0.062

(OCD)3
(oe < 0). (49b)

For loads above the critical value (49b), the contact condition da dh :::::: 0 (a = 0 if and only
if h = 0) is violated. As for the circular punch case, condition (49) becomes critical (loss of
complete contact) only when oe < O. The load-depth (P-h) response is stable, if

(50)

The last condition predicts the critical loads
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Above these critical loads, the condition dh dP > 0 is not guaranteed by the present analysis.
The normalized load, PI(EoD

2
) (often called "indentation stress"), is related to the nor­

malized depth, hiD, and indirectly to the normalized contact radius, aiD (often called
"indentation strain"). For a < 0, the stability condition corresponds to an overall loss of
stiffness in the spherical punch test. For rx > 0, the stability condition corresponds to an
overly rigid response of the contact surface deformation.

Note that for punches other than flat, stability is intrinsically woven with the applied
load, P. This is to be expected, if increasing the load, P, results in increasing the contact
radius, a. Comparing (49) and (50), it can be shown that for rx < 0 complete contact is lost
before unstable behavior commences, as was the case for the circular punch. For a soft-to­
stiff elastic modulus gradation, the second derivative of its functional form with respect to
depth plays an important role in the stability question: there is no stability (rigid response)
problem for the power law case (concave functional), whereas there is stability problem for
the exponential case, a > 0 (convex functional).

Another interesting result is that for a conical indentor, no stability questions arise
when,

2ell--a*3>03n . (51)

This poses no restriction for rt. < 0, but there are stability restrictions for rt. > O. This is
plausible, because a sharp indentor stresses the surface more than the smooth indentor,
hence a soft-to-stiff material (rx > 0) is more likely to be unstable at least for indentation
depths comparable to the characteristic length Irt.- II. On the other hand, apparently due to
the severe penetration occurring near the cone tip, the cone will always be in contact with
the body, in contrast to the circular flat and spherical punches.

These results suggest the following trends:

• The sharpness of the indentor, as expressed by the second derivative of the indentor
profile, affects the contact and the stability condition of the exponential model as
follows.

• Sharp indentors tend to have high critical loads where complete contact may be lost
(e.g., cones and pyramids never lose complete contact).

• Sharp indentors tend to have stability problems only for stiff-to-soft gradation (rt. < 0).
• Smooth indentors have stability problems for both stiff-to-soft (rx < 0) and soft-to-stiff

(rt. > 0) gradation, with partial loss of contact preceeding instability when rt. < o.
• For rx < 0, the stability condition corresponds to an overall loss of stiffness, whereas

for rx > 0, the stability condition corresponds to an overly rigid response of the contact
surface deformation.

There are some physical arguments which are appropriate to this juncture. Stability in
the present context implies that an increase ofload, P, leads to an increase of the indentation
depth, h. From the present solutions, it is to be anticipated that for a smooth, convex
indentor, the contact radius, a, increases with load. A compressive pressure is expected to
act over the entire contact circular area in order to satisfy the duality of the contact
unilateral condition with no adhesion (otherwise separation of the contacting surfaces may
occur). The relative deformation that develops beneath the surface of the contact in the
graded material is complicated and non-linearly related to the applied load. For certain
material structures (depending on rt.), the load may be high enough to induce sub-surface
deformation in such a way as to break the monotonicity of the contact radius-load (a - P)
relation and subsequently of the load-depth (P-h) relation. It may argued on physical
grounds that a material that becomes elastically softer with depth could give way to an
indentor faster than the rate at which the load rises, since as the load increases, more
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material beneath the surface is affected. This leads to separation (receding contact) of the
indentor and the contacting surface, leading to multiple contact regions. The implication
of such instability, if it happens, cannot be assessed analytically further. Possible sequential
deformation scenarios depend also on the degree of plastification of the material. Dynamic
effects cannot be excluded either, and a possible drop of load with increasing indentation
depth should be considered in experiments and actual applications of the present contact
analysis.

4. THE SPECIAL CASE OF A RIGID SPHERICAL INDENTOR

4.1. The power law case: E = Eozk

In this case we approximate the spherical indentor with a parabolic indentor, hence
f3 = 2 and M = liD (where D is the diameter of the sphere), Fig. 4a. This approximation
is valid for small contact radii, a; aiD < 0.2 in case of homogeneous solids (Yoffe, 1984),
which cover all practical spherical indentations. The result for the contact pressure dis­
tribution can be readily obtained from eqn (41) as

(3+k)P{ r
2

}llTk
l

2
per) = 1- ~

2na2 a2

Obviously, the maximum contact pressure occurs at r = 0

(3+k)P
Pmax = p(O) = o'

2na-

(52)

(53)

The minimum contact pressure occurs at r = a and Pmin = pea) = O. Note that, for a given
load, P, the maximum pressure increases by a factor ofkl3 relative to the maximum pressure
in the corresponding homogeneous case (k = 0).

The depth-contact radius (h - a) relation for the spherical indentation of an elastic
medium with a power-law variation of Young's modulus, reduces from eqn (39) to

The force-contact radius relation (P-a), eqn (40), becomes for the spherical case

3+k _ C1 (1 +k)(3+k) (~ ~) (~ ~)
a - PD 22 - k n 2 r 2 + 2 r 2 + 2 .

(54)

(55)

Combining eqns (54) and (55), we note the "size" effect in the force-depth relation, of the
order hk

/
2

, which indicates that the indentation response stiffens with load, contrary to the
homogeneous case where the elastic contact stiffness is constant. The force-depth response
for the graded case is compared with the corresponding homogeneous case in Fig. 4b.
Rostovtsev (1961) derived similar results (but incomplete in form) to eqns (54) and (55) by
using another method which was based on the properties of polynomials as applied to
contact problems.

Note that for the homogeneous case, k = 0, the solution precisely reduces to the classic
Hertzian problem (Hertz, 1882) :

a2

h=2~
D'

(56)

The vertical displacement outside the contact area (a ~ r < 00) is
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--- O<k<l
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••
h,

- - - - - k=O

_...~----!'lI:::~_...,. ~r

z

(Homogeneous)(Power law)

p

k+2
EoD

(b)

h

D

Fig. 4. (a) The spherical indentor problem for the power law case, E = Eo:!. (b) The normalized
force-depth (PI(EoDk~2) - hiD) relation for the homogeneous and power law cases.

kn

{
~ ( (/-''))} 4cos-aV r" - a- I a r" - a" 2

w(r) = 2 +:2 (r
2
-2a

2
) arctan ~2 _r2 x Dn(l +k)' (57)

4.2. The exponential law case: E = Eoe"
An approximate solution can be found for a spherical (parabolic) indentor of diameter

D (ZI = riD), Fig. Sa. The pressure distribution, per) (0 ~ r ~ a), is
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(a)

••
h,

-a=O

----- a<O

............ a>O

(b)

p

_ ....~~ ....IIIIIIIO_,,'f""""__~r

E=Eoeaz

a>O

a<O

a=O

z

h

D
Fig. 5. (a) The spherical indentor problem for the exponential law case, E = Eoe"'. (b) The nor­

malized force-depth (Pf(EoD') -hID) relation for the homogeneous and exponential law cases.

3P ( r
2)1:2

p(r) ~ -, 1- - ,
2na- a2

(58)

which is the same as for the homogeneous case (a = 0). The force-depth (P-h) relation is
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P {n ( C 1 0 2 , , )} 2 a
2

( 4 3 )h::::::-- --G(* C --O(*"+-C-G(*~ +-- I--C G(*
2naEo 2 0 3 45n 1 3 D 15 I .

The force-contact radius (P-a) relation is given by

3 3np(Sn P 3)-1
a ::::::-- -+-CIG(

Eo D Eo

2409

(59)

(60)

Clearly, eqns (59) and (60) show a "size" effect in the form of decreasing stiffness with load,
leading to a sigmoidal force-depth response for 0( < 0 (completely below the homogeneous
response) and an almost vertical (rigidly stiff) force-depth response for G( > 0 (completely
above the homogeneous response), Fig. 5b.

5. THE SPECIAL CASE OF A RIGID CONICAL INDENTOR

5.1. The power law case: E = Eozk

For the case of a conical indentor of semi-apical angle G(, f3 = I and M = cot G(, Fig.
6a. Then the pressure distribution is obtained from eqn (41), for the conical case to be

P(1 +k)(2+k) II (0 r
2.)(k-I)/2

per) = 0 r- - -:; dr.
2na- r'a a-

(61 )

For the homogeneous case, k = 0, eqn (61) reduces to the well known solution of Love
(1939),

P , , I Eo cot G(
per) = -{ - In(ar) + In [a- +a-(y 1- (r/a)2)]} = , arccosh(a/r) , (62)

na2 2(1-v")

which exhibits a logarithmic singularity at r = O. For k #- 0, the contact stresses have no
singularity at r = 0 or at any other point of the surface. In fact, the finite value at r = 0 is
the maximum contact pressure and is given by

= (0) = P(1 +k)(2+k)
Pm.x P 'k'2na-

(63)

Note that Pm.x ->XJ for k -> O. The lowest value of Pm.x (= 3P/(na2
)) appears for k -> 1.

The minimum contact pressure appears at r = a and Pmin = pea) = O.
The depth-contact radius (h-a) relation reads as

r- r(~)
y'n 2

h= a ~2-ta-n-G( -----:(--Ckc-) .
r 1+ 2

The contact radius, a, connects with the load, P, as (from eqn (40))

0+k C1 (1 +k). (2+k) (1 +k) ( k)a- = P r -- r 1+ - .
21 - k n3-2 cotO( 2 2

(64)

(65)

Combining eqns (61) and (62), we note the "size" effect in the average pressure-depth
relation, of the order h\ which indicates that the average pressure (or hardness) increases
with indentation depth. This is to be expected on the physical ground that a higher load
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--- O<k<1

(a)

••
h,

- - - - - k=O

P(r)

_.._r----"1lI~-.....,-_---r

z

(Homogeneous)

2+k
h

(Power law)

p

(b)

h
Fig. 6. (a) The conical indentor problem for the power law case, E = Eo:!'. (b) The normalized

force-depth (P-h) relation for the homogeneous and power law cases.

affects a larger material volume beneath the surface which is stiffer than the surface material;
this causes an overall stiffer contact behavior. In the homogeneous case, the average
pressure-depth variation is constant, a fact that is used in hardness estimation as the
average contact stress. Hence, elastic inhomogeneity at the surface may contribute to the
experimentally observed "size" effect of sharp indentation tests. The force~depth response
of a graded case is compared with the homogeneous case in Fig. 6b.

For the homogeneous case, k = 0, we retrieve Love's results
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n
h=a--,

2 tan':/.
, n Eo

P=a-----.
2 tan':/. 1_ v"

(66)

The vertical deformation outside the contact area (a :( r < CfJ) is

(67)

5.2. The exponential law case: E = Eoe"'
For a conical indentor of semi-apical angle }' (ZI = r cot f), Fig. 5, the force-contact

radius relation reads

(68)

where

(69)

and C1 and t/J are as defined before, egn (59). The total force, P, is related to the contact
area, a, as

P = - ( 2C
j

,) ._-

2 I - 3n ':/.*' tan}'

(70)

Using the geometric relation, h = an/(2 tan y), which connects the contact radius, a, with
the indentation depth, h, we can express (70) as a force-depth (P-h) relation. Clearly, the
"size" effect appears since the force, P, is not a parabolic function of the depth, h, Fig. 7b.
In all cases, at low values of h, the results are close to the homogeneous case. At high loads,
a sigmoidal response appears for':/. < 0, completely below the homogeneous response and
a concave response for':/. > 0, completely above the homogeneous case. In addition, it can
be verified that the logarithmic singularity of the contact pressure distribution appears at
the cone-tip (r = 0), as in the homogeneous case, egn (62).

Note that for the homogeneous case, ':/. =°(':/.* = 0), we recover exactly the classical
solutions for the circular punch, as well as for the spherical (egn (56)) and the conical (egn
(66)) indentors (Harding and Sneddon, 1945).

6. FINITE ELEMENT RESULTS FOR THE RIGID CIRCULAR PUNCH

The foregoing analytical results provide closed-form solutions for the contact pressure
distribution and surface displacements in the graded elastic medium loaded normally by an
axisymmetric indentor. We now check these predictions with detailed finite element analy­
ses. These computations provide additional information on the stress fields in the interior
of the elastic solid. The numerical analysis is also capable of providing the effect of variation
in v as a function of z (not done here because of space restrictions, see Part I for further
details).

The rigid indentors were loaded by displacement control, as is the case for indentation
tests. The details of the finite element procedure and mesh have been discussed extensively
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Fig. 7. (a) The conical indentor problem for the exponential law case. E = E"e". (b) The normalized
force-depth (P'(Eol~I') -hl:x1J relation for the homogeneous and exponential law cases.

in Part I (Giannakopoulos and Suresh, 1997). A total of about 24 elements were allowed
to come in contact in order to provide sufficient resolution in the computation of the fields
around the indentors. The outer boundaries were taken to be at least 50 times the contact
radius, to ensure semi-infinite conditions. In the present case, a rigid cylindrical punch of
radius a (unit length) was pressed by a displacement of order wo/a = 0.005 which was the
same in order to make comparisons with the homogeneous case. In this paper we present
only the fields for the circular flat punch case because of its generality and usefulness for
all other axisymmetric punches. The finite element results for the spherical and cone
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indentors for graded materials will be presented along with experiments in Suresh et al.
(1996) and Alcala et al. (1996), respectively.

6.1. The power law case: E = Eozk

A wide range of the parameter k (k = 0.25,0.5,0.75,1.0) has been modeled. Several
different values of Poisson ratio, v, below and above its critical value, Vcr = I/(k+2), were
analysed. For a particular choice of wola, the results are universal, if all lengths are
normalized by the punch radius a, and the stresses by Eo. For each value of V and k, the
normalized stress fields are completely determined in the normalized plane (zla, ria) by the
contours of constant in-plane normalized stresses (Jrrl(Eotl), (Jzz/(Eoak

), (Jr=I(Eotl), and the
circumferential stress (Jool(Eoak

). It was proved that the Poisson ratio has a rather weak
effect for the stress fields in the vicinity of the punch, because the singularity at the punch
perimeter dominates the solution. Overall, higher Poisson ratios (v ~ 0.5) resulted in a
stiffer response, exactly as expected from the analysis. The computed values of the total
force, P, and the contact pressure at the origin, p(r = 0), were within 99% of the values
predicted by the theory (eqns (5) and (7)). Of course, the singularity at the punch perimeter
was not captured, since no special singular element was used. However, at a distance of
one to two elements away from the contact perimeter, the computed solution was remark­
ably close to the theory.

For comparison, Fig. 8a shows the deformation of a homogeneous material, k = 0,
with v = 0.2, under a circular punch. Figure 8b gives the isocontours of the normalized
radial stresses (JrrlEo, Fig. 8c the normalized vertical stresses (J==I Eo, Fig. 8d the normalized
shear stresses (Jr)Eo and Fig. 8e the normalized circumferential stresses (JooIEo. Figure 9
contains all the corresponding fields relevant for a power law graded material, k = 0.25,
with v = 0.25. It is obvious that for the same normalized indentation depth, wo/a, less
sinking-in develops for the power law case than for the homogeneous case, as expected
from the analysis. The singularity at the contact perimeter is not as strong as for the
homogeneous case, also expected from the analysis. The stress fields focus more in the

(a)
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Fig. 8. (a) The deformation under a flat circular punch. Homogeneous case, k = 0, v = 0.25,
wo/a = 0.005. Displacements are magnified by 50. (b) Normalized radial stresses. (J,,;(Eoa'). (c)
Normalized vertical stresses, (J,,/(Eoa'). (d) Normalized circumferential stresses, (JI/II/(Eoa'). (e)

Normalized shear stresses. (J,)(E"a'). (Continued overleat:)
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Fig. 8-·-Continued.

interior, indicating that possible plasticity or damage is expected to concentrate mainly in
the interior rather that at the surface (compare Figs 8 and 9). The main results and
comparisons for the flat punch on a material with power law elastic modulus distribution
are summarized in Table I. In all cases, the fields far away from the indented region conform
to the point load solutions found in Part I (Giannakopoulos and Suresh, 1997), further
confirming the validity of the present analysis and the robustness of the finite element
methodology used in the context of the contact theory of graded materials.
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Fig. 8- ·Continued.

Table I. Flat circular punch (power law model)

Force/depth correlation (P-h)

Surface sinking-in
Singularity at the contact perimeter
Contact conditions
Incremental stability
Stress fields close to the indentation

Homogeneous (E,,)

linear. increasing as \' -+ 0.5

more than the inhomogeneous case
~ 1'2
complete contact
yes
spread on the surface

Power law (E,,~k; a ,;: k < I)

linear. lower than the homogeneous
case. increasing as \' -+ 0.5
less than the homogeneous case
(k~ 1);2
complete contact
yes
focus in the interior
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(a)

Fig. 9. (a) The deformation under a flat circular punch. Power law case. k = 0.25. v = 0.25,
wola = 0.005. Displacements are magnified by 50. (b) Normalized radial stresses, (J,,/(£oa'). (c)
Normalized vertical stresses, (J"/(£oa'). (d) Normalized circumferential stresses, (JI/I//(£oa'). (e)

Normalized shear stresses, (J,)(£oa'). (Continued opposite and overleaf)

6.2. The exponential law case: E = Eoe"'
The exponential model was examined for a variety of positive and negative values of

ct* = act, with Poisson ratios, v = 0 and 0.3. The analytical results (eqns (33) and (34» for
the total force P and the contact pressure per = 0) were less than 6% higher for IC(* I ~ 0.1
when compared to the finite element results. They deviated more for increasing values of
1ct* I. This is expected, since the analytical results were obtained based on a two-term
expansion around the value ct* = O. Nevertheless, all conclusions were qualitatively verified,
but with the numerical values slightly higher than those predicted by the theoretical analysis.

ForC( < 0, the normalized force, P/P~~o (P~~o is the force corresponding to the homo­
geneous case), drops precipitously from 1 to 0 (see Table 2). For act ~ - 1.125, loss of
complete contact is detected. The normalized separation radius, ctsct, increases from 0 to I,
as act ~ 1.125, until instability occurs at act ~ - 1.625 (see Table 2). The sequence of these
events (contact separation followed by instability) was correctly predicted by the theory
(eqns (47) and (48». For ct > 0, the normalized force, P/p"~o, increases slowly from 1 to 2
(see Table 2). For aC( ~ I, instability occurs. No loss of complete contact is detected
(ct,ct = 0), as predicted by the theory. The Poisson ratio does not affect the above values
much (see Table 2) ; however, it lowers the contact stiffness (indentation response is more
compliant). This is contrary to the power law case where increasing the Poisson ratio results
in higher contact stiffness.

Turning to the field variables, we plot three representative cases in Fig. 10 for
aC( = -0.2, Fig. II for act = -1.5 (partial contact) and Fig. 12 for act = 0.2. Comparing
Figs 8a, lOa and 12a, we observe that the amount of sinking-in of the surface is smaller for
C( > 0 and large (extending well outside the contact regime) for C( < 0, compared to the
homogeneous case (ct = 0). The stress fields in the vicinity of the contact area appear quite
similar in shape with the homogeneous case (Fig. 8), with the exception of the case of
partial contact (Fig. II). However, the stress magnitudes are much stronger for ct > 0 and
weaker for C( < O. This is expected, since the stresses have a square-root singularity which
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Fig.9-Continued.

dominates the fields in the vicinity of the contact area. The comparisons of the overall
response of the exponential case with the homogeneous case are summarized in Table 3. In
all cases, the fields far away from the indented region converge to the point load solutions
found in Part I (Giannakopoulos and Suresh, 1997), further confirming the validity of the
present analysis and the robustness of the finite elements used for the indentation of graded
materials. Obviously, other types of rigid or elastic indentors, as well as other elastic
gradations of elastic properties, could be easily analyzed with the present finite element
formulation.
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Fig. 9-Conlinued.

7. CONCLUSIONS

The present paper examines the indentation of solids with gradients in elastic properties
with axisymmetric indentors. Two main elastic gradiation functions with depth, z, were
examined: the power (E = Eozk

) and the exponential (E = Eoe"O) law. These are rep­
resentative cases of many types of materials in mechanical and geotechnical applications.
Three kinds of rigid, frictionless indentors were examined: the circular flat punch, the
spherical and the conical punch. Such indentors are of particular interest in foundation
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Table 2. Finite element results for the exponential model (flat circular
punch). Load, P, normalized by the corresponding homogeneous case,
P,~o, for the same indentation depth. Corresponding fraction of the

separation radius (a,la)

(X* = (Xa PIP, = 0 PIP, = 0 asia
v = 0.0 v = 0.3 v = 0.0, 0.3

0.00 1.000 1.000 0.00
-0.05 0.862 0.767 0.00
-0.10 0.545 0.489 0.00
-0.15 0.288 0.280 0.00
-0.20 0.155 0.160 0.00
-0.25 0.089 0.096 0.00
-0.50 0.0123 0.0141 0.00
-1.00 0.00133 0.00170 0.00
-1.225 0.00089 0.00102 0.25
-1.25 0.00062 0.00070 0.50
-1.50 0.000033 0.000037 0.67
-1.625 Instability Instability

0.00 1.000 1.000 0.00
0.05 1.179 1.097 0.00
0.10 1.277 1.198 0.00
0.15 1.365 1.280 0.00
0.20 1.448 1.377 0.00
0.25 1.528 1.461 0.00
0.50 1.900 1.862 0.00
1.00 Instability Instability 0.00

(a)

Fig. 10. (a) The deformation under a flat circular punch. Exponential law case, a(X = -0.2, v = 0.2,
\Vola = 0.005. Displacements are magnified by 50. (b) Normalized radial stresses, (J,,/Eo. (c) Nor­
malized vertical stresses, (J,)Eo. (d) Normalized circumferential stresses, (JIIII/Eo. (e) Normalized

shear stresses, (J,)E". (Conlinued orerleaj:)

engineering as well as in indentation testing of inhomogeneous materials with smooth or
sharp indentors.

The theoretical analysis was based on the results for the point force acting normally
to the surface of a semi-infinite space which is locally isotropic with constant Poisson ratio
(Giannakopoulos and Suresh, 1997; Part I), The circular flat punch was then examined
and the attendant results used to construct corresponding solutions for the spherical and
conical punch, as well as for any convex axisymmetric indentor. From the theoretical
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Fig. to-Continued.

analysis, it was possible to obtain in closed form results such as the force-depth relations,
the depth-contact radius relations and the contact pressure distributions. Subsequently, full
finite element solutions were employed to confirm all the theoretical results, thus proving
the robustness of the theory. In the present paper, we show only the finite element results
for the circular flat punch problem. The main conclusions of this work are as follows.

(I) A soft-to-stiff elastic gradient beneath the surface does not always represent a soft
contact response. The power law model and the exponential law model (for a > 0) indicate
soft and stiff contact responses, respectively.
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Fig. IO---Continued.

(2) The stiff-to-soft elastic gradient may lead to a complete loss of contact in case of
smooth indentors. The stiff-to-soft gradient could lead to stability problems for sufficiently
high applied force or contact radius. A rapidly varying soft-to-stiff elastic gradient may
also lead to stability problems for sufficiently high loads.

(3) The milder contact pressure singularity at the perimeter of a flat punch and the
absence of contact pressure singularity at the cone-tip in the power law case are noted.

(4) An increase in the Poisson ratio stiffens the contact response for the power law
case and softens the contact response for the exponential law case. The Poisson ratio has
little influence on the stress fields of the flat punch and the conical indentors. due to the
stress concentration developed in the vicinity of the contact area.
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Fig. II. The flat circular punch. Exponential law case, aiX = - 1.5, v = 0.2, wo/a = 0.005. Dis­
placements are magnified by 50. Partial contact develops in the center of the contact. (a) Normalized
radial stresses, (In/EO' (b) Normalized vertical stresses, (J,,/Eo. (c) Normalized circumferential

stresses, (Joo/Eo. (d) Normalized shear stresses, (J,clEo. (Continued opposite.)
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Fig. ll--Conlinued.
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Table 3. Flat circular punch (exponential law)

Force/depth correlation
(P-h)

Surface sinking-in

Singularity at the contact
perimeter
Contact conditions

Incremental stability

Stress fields close to the
indenter

Homogeneous (Eo)
:t=0

linear. increasing as
\' --> 0.5

-1/2

complete contact

yes

spread at the surface

Exponential (Ee")
:t<0

linear. lower than the
homogeneous case,
decreasing as v --> 0.5
more than the
homogeneous case,
extends considerably at
the surface
-1.2

loss of contact at
:ta = -1.225
loss of stability at
:ta = -1.625
similar to but weaker
than the homogeneous
case, considerably
different when loss of
contact occurs

:t>0

linear, higher than the
homogeneous case,
decreasing as v --> 0.5
less than the
homogeneous case

-1.2

complete contact

loss of stability at
:ta = 1.000
similar to but stronger
than the homogeneous
case

(5) In all cases, the "size" effect, as exemplified in the estimation ofthe average contact
pressure was evident. This quantitatively indicates the influence ofthe elastic inhomogeneity
on the hardness calculations. The conical punch results imply in particular an increasing
hardness for a soft-to-stiff response and a decreasing hardness for a stiff-to-soft response,

(6) For the power law case, the Poisson ratio has important implications for the
spherical punch problem, A Poisson ratio lower than the critical value, 1/(k+2), resulted
in moving the point of maximum Mises stress closer to the surface, On the other hand, a
Poisson ratio higher than I /(k +2) resulted in eliminating the tensile in-plane principal
stresses responsible for the Hertzian type of cracking,

(a)

Fig. 12. (a) The deformation under a flat circular punch. Exponential law case. a:t = 0,2, v = 0.2,
H'o/a = 0.005. Displacements are magnified by 50. (b) Normalized radial stresses, (J,,/Eo. (c) Nor­
malized vertical stresses. (J,,! t~J' (d) Normalized circumferential stresses, (J'"I! Eo. (e) Normalized

shear stresses, (J,c/Eo. (Continued Opposile and ()l'a/ear)
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Fig. 12-Conlil1ued.
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Fig. 12-Continued.
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(7) The stress fields for the power law case are focused more in the interior than the
corresponding homogeneous or the exponential case, indicating that possible development
of plasticity and/or damage will be confined in the interior below the contact region. The
reverse is true for the power law case (ex < 0).
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APPENDIX

Hruban (1958), Gibson and Kalsi (1974) and Calladine and Greenwood (1978) proved that a simple radial
field exists in the case of k = I and v = 0.5 and follows the distribution of the homogeneous case. In a spherical
coordinate system (R, e, rP), it was found that the non-zero components of displacements, strains and stresses are

R 2
U R = C/R 2

, ERR = -2C/R], BOil = l:tPr/i = C/R 3
,

-2CEocose
(fRR =

with C = 3PI(4nEo). The displaced volume gives a remarkable relation between indentation displacement and
contact stress, which are simply related with a Winkler type of spring constant of magnitude 2Eo/3. It is clear that
to keep surface displacements continuous, cylindrical punch cases should be avoided. The force-depth (P-h),
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radius-depth (a~h) and contact pressure p(r) relations for the spherical (parabolic) rigid indenter of diameter D
take the form :

1( 2 a
2

2Eo( r
2

)
p = 3DEoh , h = D' p(r) = -3- h- D .

Clearly, these cases show no sinking-in (or pile-up) ofmaterial and the displacements' derivatives are discontinuous
at the contact perimeter. The same relations for the conical rigid indenter of half-apical angle III read as


